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1 Introduction

This article is concerned with the time evolution of the superconducting and
electromagnetic properties of a superconductor in a time-dependent magnetic
field, as described by the time-dependent Ginzburg-Landau (TDGL) equa-
tions of superconductivity. The dynamics of the TDGL equations were the
focus of investigation in our earlier article [1], where we showed that the equa-
tions define a dynamical process in a suitably chosen Hilbert space. Here, we
study the particular case of an asymptotically autonomous dynamical process,
which arises when the time rate of change of the applied magnetic field decays
sufficiently fast as time goes to infinity. We show that the dynamical process
asymptotically approaches a dynamical system and that its attractor coincides
with the attractor of the limiting dynamical system.

In the remainder of this section, we introduce the TDGL model of super-
conductivity. In Section 2, we give its functional formulation. In Section 3,
we state our results; the proofs are given in Section 4.

1.1 Ginzburg-Landau Model of Superconductivity

The TDGL equations of superconductivity are

n(%+m¢)¢:-(£v+A)2¢+(1—|¢|2)¢, (1.1)

aa—?—l—qu:—VxVxA—l—Js—l—VxH, (1.2)
where
1 9 e
T2 (0, A) = 5 (0V6 - V) — 5P A = —Re |6 (£V 4 4) 0]

(1.3)
The unknowns are the complex-valued order parameter 1, the vector-valued
vector potential A, and the real-valued scalar potential ¢. They determine
the physically relevant variables, namely, the supercurrent density J,, the
magnetic induction B = V x A, and the electric field E = —0,A — V.
The vector H represents the (externally) applied magnetic field; it is a given
function of space and time, which is divergence free, V - H = 0, at all times.
The Eqgs. (1.1) and (1.2) must be satisfied everywhere in the superconductor,
at all times ¢, and their solution must satisfy the boundary conditions

n-(£v+A)¢+£w:o and nx(VxA—H)=0.  (14)
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The vector n is the unit outward normal, and 7 is a nonnegative function.

The parameters n and « are the (dimensionless) friction coefficient and
Ginzburg-Landau parameter, respectively. As usual, V = grad, Vx = curl,
V. =div, and V? = V-V = A; a superscript * denotes complex conjugation,
and 7 is the imaginary unit. The symbol J; denotes the partial derivative 9/dt.

We assume that the vectors A, B, and H take values in R" (n = 2 or
n = 3), the superconductor occupies a bounded domain € in R”, and the

boundary 9 of Q is of class C'*!.

1.2 Gauge Choice

The TDGL equations are invariant under the gauge transformation
Gyt (1, A, ) = (Ve™ A+ VY, 6— 0y ). (1.5)

The gauge x can be any (sufficiently smooth) real scalar-valued function of
position and time. For the present investigation, we adopt the “¢ = —w(V-A)”
gauge, with w a real nonnegative parameter [2]. This gauge is determined by
taking x = xw(x,1) as a solution of the boundary-value problem

(0 —wA)x =0+ w(V-A) on Q x(0,00), (1.6)
wn-Vy)=—-wm-A) on JdQ x (0,00). (1.7)

In this gauge, A and ¢ satisfy the identities
d+w(V-A)=0 on Q x(0,00), wn-A)=0 on dQ x (0,00). (1.8)

If the triple (¢, A, ¢) satisfies the TDGL equations, then the second identity
can be strengthened, and we have [1]

d+w(V-A)=0 on Q x(0,00), n-A=0 ond2x(0,00). (1.9)
The gauge choice fixes ¢, such that [, ¢ de = 0 at all times.

In the “¢ = —w(V - A)” gauge, the TDGL equations reduce to

W _
Tor ~
J0A

o = VXV XA WV(VA) $ T 4V H inQx (0,00), (L11)

(év + A)2 binon(V-A)+ (1= [0) & in Qx(0,00), (1.10)



where J; is again given by Eq. (1.3), and
nVi+yp =0, nA=0, nx(VxA—-—H)=0 ond0x(0,00). (1.12)

Henceforth, we use the term “gauged TDGL equations” to refer to the system
of Egs. (1.10)—(1.12). The gauged TDGL equations govern the evolution of
the pair (¢, A) from the initial data,

=19 and A =Ap on Q x{0}, (1.13)

where 1y and Ag are given.

2 Functional Formulation

In this section we reformulate the gauged TDGL equations as an abstract evo-
lution equation in a Hilbert space. The notational conventions are established
in Section 2.1; preliminary material is presented in Section 2.2; the functional
formulation of the gauged TDGL equations is given in Section 2.3.

2.1 Notation

The symbol €' denotes a generic positive constant, not necessarily the same
at different instances. All Banach spaces are real; the (real) dual of a Banach
space X is denoted by X'.

We recall that @ C R" (n =2 or n = 3), Q is bounded, and its boundary
08 is of class O,

The Banach spaces in this investigation are the standard ones [3, 4]: the
Lebesgue spaces LP(2) for 1 < p < oo, with norm || - ||rr(q); the Sobolev
spaces W™?(Q) for nonnegative integer m, with norm || - ||ym.z; the fractional
Sobolev spaces W*2(£1), with noninteger s; and the spaces C*(Q), for v > 0,
v=m+ X with 0 < X < 1, of m times continuously differentiable functions
on 2, whose mth-order derivatives satisfy a Holder condition with exponent
A if v is not an integer, with norm || - ||cv. The inner product in L*(£2) is
(+,-), and W™2(Q) is a Hilbert space for the inner product (-,"),.2, given by
(U, V)2 = Yjaj<m (07w, 0%v) for u,v € W™2(Q). The definitions extend to
spaces of vector-valued functions in the usual way, with the caveat that the
inner product in [L*(Q)]" is defined by (u,v) = [, u - v, where - indicates the
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scalar product in R”. Complex-valued functions are interpreted as vector-
valued functions with two real components.

Functions of space and time defined on Q x [0,T], for some T' > 0, are
considered as mappings from the time domain [0, 7] into a Banach space X =
(X, ]| - |lx) of functions on the spatial domain € and may be considered as
elements of LP(0,7; X) for 1 < p < oo, or W**(0,T; X) for nonnegative s, or
C(0,7; X) for v > 0.

Function spaces of ordered pairs (¢, A), where ¢ : @ — R* and A : Q —
R” (n = 2,3), play an important role in the study of the TDGL equations.
Because the regularity requirements for ¢» and A are the same, it is convenient
to adopt the special notation X = X?% x X" for any Banach space X of
real-valued functions defined on ©; X? and X" are the underlying spaces for
the order parameter 1) and the vector potential A, respectively. A suitable
framework for the functional analysis of the gauged TDGL equations is the
Cartesian product

W1+a,2 — [W1+a,2(Q)]2 % [W1+a’2(ﬂ)]n,
with % < o < 1. This space is continuously imbedded in W% N £,

A weak solution of the gauged TDGL equations on the interval [0, T, for
some T' > 0, is a function (1, A) € C(0,T; W't*?) with values (v, A)(t) =
((t), A(t)) € W2 which satisfies Eqs. (1.10)—(1.12) in the sense of distri-
butions for each ¢t € (0,7).

2.2 Reduction to Homogeneous Form

Before giving the functional formulation of the gauged TDGL equations, we
reduce the boundary conditions (1.12) to homogeneous form. The reduction
is done at each fixed instant; time is therefore a parameter, which we will not
write explicitly.

Assume H € [L*(Q)]", and define Ay as a minimizer of the convex
quadratic functional J, = J,[A],

T [A] = /Q W(V- AP+ |V x A-HP| da, (2.1)

on the domain

D(J,)={AcW"Q)]":n-A=0o0n N}
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If w > 0, this minimizer is unique, and V- Ag = 0 in Q. If w = 0, we restrict
the minimization to the closed linear subspace Dy(Jo) = {A € D(Jy) : V- A =
0 in O} of D(Jy), where Jy has a unique minimizer Ag; see [1, Lemma 3]. In
either case, Ay is the unique solution of the boundary-value problem

VxVXxAg=VxH and V-Ag=0 inQ, (2.2)

n-Ap=0 and nx(VxAg—H)=0 on 0. (2.3)

Thus, Apn takes care of the inhomogeneity in the boundary conditions (1.12).
The mapping H +— Ay, which is linear and time independent, is continuous

from [W%2(Q)]" to [W'H02(Q)]" for 0 < 0 < 1; see [1, Lemma 4].

The boundary conditions in the gauged TDGL equations become homo-
geneous if we formulate the equations in terms of ¢ and the reduced vector

potential A’,
A=A - Ay. (2.4)

In fact, we may summarize the gauged TDGL equations in the form

o1

W_WA¢_¢ IHQX(0,00), (25)
oA’ / / .
5 +VXxVxA -wV(V-A)Y=F inQ x(0,00), (2.6)

n-V+9p =0, n-A'=0, nx(VxA)=0 ondQx(0,00), (2.7)

where ¢ and F' are nonlinear functions of ¢» and A’

¢ = ot A) = = [ (T0)- (A + An)
L1 (VA = LA+ Aul (=P 0], @)
F= F(t7¢7 A/) = J/s - |77Z)|2AH - AatH' (29)

Here we have used the abbreviation J, = J (¢, A"), where J; is the ex-
pression for the supercurrent density, given by Eq. (1.3). The equations are
supplemented by initial data, which follow from Eqs. (1.13) and (2.4),

=19 and A'= Ay — Ag on 0 x {0}. (2.10)



2.3 Gauged TDGL Equations

From here on, the analysis is restricted to the case w > 0.
Let the vector u : [0,00) — £ represent the pair (¢, A),

and let A be the linear selfadjoint operator in £2 associated with the quadratic

form @, = Q. [u],

1 2 N2 12 2
@w[w:/gl—w bV A +|WA|] et [ lof doto),

nK?
(2.12)
on the domain

D(Q.) = D(AY?) = {u= (), A) e W :n- A =0 on 09}.

The quadratic form @, is nonnegative. Furthermore, since w > 0, Q, [/, A'] +
c||¥]|z2 is coercive on W'? for any constant ¢ > 0. Hence, A is positive
definite in £? [5, Chapter I, Eq. (5.45)]. If no confusion is possible, we use the
same symbol A for the restrictions A, and Aas of A to the respective linear
subspaces [L*(Q)]* = [L*(Q)])? x {0} (for ¢) and [L*(Q)]" = {0} x [L*(Q)]"
(for A") of L%

A weak solution of the boundary-value problem (2.5)—(2.7) that satisfies
the initial conditions (2.10) corresponds to a mild solution u € L* of the
initial-value problem

d

d—? 4 Au=F(tu(t)) fort>0; w(0)=u, (2.13)
where F(t,u) = (¢, F), ¢ and F given by Eqgs. (2.8) and (2.9), and wy =
(10, Ag). With < a <1 and ug € W'*? a mild solution of (2.13) on [0, 7]

is a continuous function w : [0, 7] — W't*2 such that
¢
u(t) = e g —I—/ e_A(t_s)}"(s, u(s))ds for 0 <t <T. (2.14)
0

The equation Au = f in L* where f = (¢, F) is any element of L2, is
equivalent to a system of uncoupled boundary-value problems,

1
——Av=p inQ, n-Vip+yp=0 on Y (2.15)

nK
VxVxA—wV(V-A)=F nQ nA=0nx(VxA)=0 ond.

(2.16)



(More precisely, the system of Eqgs. (2.15)—(2.16) holds in the dual space D(Q,,)’
of D(Q,,) with respect to the inner product in £2.) Boundary-value problems
of this type have been studied by GEORGESCU [6]. Applying his results, we
conclude that D(A) is a closed linear subspace of W*?. Since A is positive
definite on L%, its fractional powers A? are well defined for all # € R; they
are unbounded for § > 0. Interpolation theory shows that D(A%) is a closed
linear subspace of W2 for 0 < 0 < 1.

3 Results

In this section we present the results of our investigation in the form of three
theorems and a corollary. The proofs of the theorems are given in Section 4.
We begin by recalling some relevant results from our earlier article [1].

The TDGL equations generate a dynamical process if the data satisfy the
following hypotheses:

(H1) © ¢ R" (n = 2 or 3) is bounded, with 9Q of class C'*'—that is,
0 is a compact (n — 1)-manifold described by Lipschitz-continuously
differentiable charts;

(H2) ~:0Q — R is Lipschitz continuous, with y(z) > 0 for all « € 9Q;

(H3) w,a,8 € R are constants, such that 0 < w < o0, £ < a < 1, and

0<08<3(l—a)and ’
(H4) H € L*=(0,T; [W>2(Q)]") n W20, T; [L*()]") for any T € (0, 00).

The initial-value problem (2.13) has a unique mild solution v € C(0,T; W'*t:?)
for any up € D(AU+)/2) and any T > 0 [1, Theorem 1]. These mild solutions
generate the dynamical process U = {U(t,s): 0 < s <1 < T} on D(AI+)/2)
by the definition

u(t)=Ul(t,s)u(s), 0<s<t<T. (3.1)

The process U completely describes the dynamics of the TDGL equations. In
the present article we focus on the large-time asymptotic behavior of U(t, s)
as t — oo (s fixed, s > 0) in the special case where the applied magnetic field
is asymptotically stationary.



3.1 Asymptotically Stationary Field
Instead of the hypothesis (H4), we impose the stronger hypotheses

(H4’) H € L=(0,00; [W"2(Q)]") for some o’ € (a, 1), and
(H4”) 0,H € L'(0, 00; [L*()]™) N L2(0, o0; [L*(2)]™).

We claim that, under these hypotheses, the applied magnetic field H ap-
proaches a limit in [W*2?(Q)]" as ¢t — oo.

For any ¢t > s > 0, we have
t
H(t) = H(s) +/ O.H (-, 1) dt'. (3.2)

The integral exists as a Bochner integral in [L*(Q)]". The hypothesis (H4”)

guarantees that
oo , 1/2
/ (/ 0. (2,1 d:z;) dt' < oo,
0 Q

H. = lim H(1) (3.3)

t—00

so the limit

exists in [L*(Q)]" and is given by
H. = H(s)+ /Oo OH(- 1)U, s> 0. (3.4)

Combining Eq. (3.3) with the hypothesis (H4’), we obtain the same limiting
relation (3.3) in the weak topology on [W*"2(Q)]" and, consequently, in the
strong topology on [W®2(Q)]", because the imbedding W'?(Q) — W*2(Q)

is compact for a < o/, by Rellich’s theorem and interpolation.

3.2 Large-Time Asymptotic Behavior

Given the limiting relation (3.3), we compare the large-time asymptotic behav-
ior of the solution of the gauged TDGL equations, described by the dynamical
process U, with that of the gauged TDGL equations for a superconductor in
the stationary applied magnetic field H ..,

o

v =—(Lv+ A)2¢+z’nw<V-A>+ (1= [F) ¢ inQx(0,00), (3.5)
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0A
o =—-VXxVXxA+wV(V-A)+J,+V xH, inQx(0,00), (3.6)
n-Vo+yp =0, n-A=0, nx(VxA—-—H,)=0 on JdQ x (0,00).
(3.7)
The quantity J is given in terms of ¢ and A by the same expression (1.3) as
in the time-dependent field case.

Equations (3.5)—(3.7) define a dynamical system [1]. Before we can in-
troduce this dynamical system, we must homogenize the boundary condi-
tions (3.7). The homogenization is achieved in the usual way by reformulating
Eqgs. (3.5)—(3.7) in terms of ¢ and a reduced vector potential A’,

A=A— An_. (3.8)

Here, An_ is the (unique) solution of the boundary-value problem

VxVxAn. =VxH. and V-Apg_ =0 inQ, (3.9)
n-Ag, =0 and nx(VxAg, —H.)=0 on 0. (3.10)
Equations (3.5)—(3.7) correspond to the abstract initial-value problem
dv
T + Av =G(v(t)) fort>0; v(0)=wo, (3.11)

for a vector v : [0,00) — £?, whose components are 1) and A’,
v= (¢, A) = (Y, A — An..). (3.12)

The nonlinear function G in Eq. (3.11) stands for the vector G(v) = (v, G),
where

(A0 = = [ (V0 (A An)
L (VA A A (1) ] (319)
G=G)=J — [ An. (3.14)

Here, J! = J (¢, A'), as in Eq. (2.9). The vector vg = (¥9, Ag — An.,)
is given, vy € D(A!*T2)/2). The solutions of the abstract initial-value prob-
lem (3.11) generate a dynamical system S = {S(t): ¢ > 0} on D(A+2)/2) by
the definition

v(t) = S(t)ve, >0 (3.15)
see [1, Corollary 2]. The system S completely describes the dynamics of the
TDGL equations (3.5)—(3.7).

The first theorem describes how the large-time asymptotic behavior of
Ult,s) (s fixed, s > 0) compares with that of S(¢) as t — oc.
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Theorem 1 Let ¢ and R be arbitrary positive numbers, and let Br be the ball
of radius R centered at the origin in W'T*2, There exist numbers § > 0,
A >0, and to > 0 such that, for any us, v, € DAY N By satisfying the

inequality ||us — vs||witaz < &, we have
U (t, 8)us — S(t — 5)vs]|pyrtas < e 72 (3.16)

for all s,t € R with to < s <t < 0.

The proof of Theorem 1 is given in Section 4.1.

Theorem 1 shows that the dynamical process U is asymptotically au-
tonomous; see, for example, [8, Section 3.7, p. 46]. A dynamical process
U={U(t,s) : 0 <s <t < oo} on a Banach space X' is asymptotically au-
tonomous if there exists a dynamical system S = {S(¢) : ¢ > 0} on X" with the
following property: For arbitrary positive numbers e, R, and T', there exists
some tg > 0 such that

|U(s +t,s)ug — S(Huolly < ¢ (3.17)

for all ug € X with ||ug||x < R and for all (s,t) € [to,00) x [0, T]. Equivalently:
For all positive numbers R and T',

|U(s+1,8)ug— S(t)ugllx = 0 as s — oo, (3.18)

uniformly in (uo, 1), for all ug € X with ||uel|lx < R and all ¢ € [0,T].

Corollary 1 The dynamical process U = {U(t,s) : 0 < s <t < oo} defined
in Bq. (3.1) is asymptotically autonomous; its large-time asymptotic limit is
the dynamical system S = {S(t) : t > 0} defined in Fq. (3.15). Moreover, if ¢,
R, and T are arbitrary positive numbers, then there exvist numbers 6 > 0 and
to > 0 such that, for any u,,v, € D(AMT/2) N By satisfying the inequality

|us — vs||wrtaz <&, we have
U (s +1,8)us — S(t)vs||wr+az < e, (3.19)

for all s,t € R with tg < s < oo and 0 <t < T,
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Following [1], we introduce the energy-type functional

2

Lo nwly, Al = /Q U (év + A) v+ % (1- W)2 + 2w(V - A)?

HY x A-H@OP] do+ [ 4 ‘%;@ " do(a) (3.20)

and its analog with H (1) replaced by H . Since H is time dependent, F,, g
is not a Liapunov functional for U. However, a slight modification of E, y()
gets us closer to a Liapunov functional. Indeed, from [1, Lemma 1] we have
the inequality

B — PO < BV, — P(s) for 0<s <t < oo, (3.21)

H(s)
where the function P, defined by the expression
¢ 9 1/2
P = | (/ 0.H (1) d:z;) &' for t >0, (3.22)
o \Ja
is bounded for all times, because of the hypothesis (H4”). Hence, the quantity
(Ei{f{(t) — P(t))2 plays the role of a Liapunov functional.

Theorem 2 The dynamical process U defined in Fq. (3.1) and the dynamical
system S defined in Eq. (3.15) have the following properties:

(i) Eun. ts a Liapunov functional for S in the sense of [7, Chapter VII,
Definition 4.1].

(ii) The functional B,y satisfies the inequality (3.21), where the function
P, defined in Fq. (3.22), is bounded for all times.

(iii) The orbit of each ug € D(AMI2) under U(s +t,s) (s fived, s > 0) and
S(t), t >0, has compact closure in W2,

(iv) The omega-limil set of each uy € D(AVFI2) under U(s 41, ) (s fired,
s >0) and S(t),t > 0, is a nonempty compact connected set of divergence-free

equilibria for S.
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The proof of Theorem 2 is given in Section 4.2.

We need to distinguish the omega-limit sets for the dynamical process
U(s +t,s) (s fixed, s > 0) from those for the dynamical system S(t) as
t — oco. We do so by subscripting the former, which depend on the choice of
5. Thus, for s > 0 and uy € D(A+2)/2) fixed, we denote the omega-limit set
of the orbit {U(s + ¢, s)ug: t >0} in D(.A(H'a)ﬂ) by ws(ug),

ws(ug) = [ {U(s+t,8)ug: t > to},

>0

where the closure is taken in W't*2 and keep the notation w(ug) for the
omega-limit set of the orbit {S(¢t)up : ¢ > 0}. It follows from the identity
Ulr,t)U(t,s) = U(r,s) for 0 < s <t < 7 < oo that wi(U(t, s)ug) = ws(uo)
whenever 0 < s <t < 0o and ug € D(.A(H'a)/z).

An attractor for the dynamical process U is the omega-limit set of one of

its open neighborhoods B in D(A+2)/2)

wBU)= 1 U Uls+t5)B,

to ZO SZO7 tZtO

where the closure is taken in W1t*2, An attractor is called a global attractor if
it attracts all its open bounded neighborhoods. Notice that, for the dynamical
system S,

w(B;S)= (1 U S@H)B.

to>0 t>to

The existence of a global attractor Ag for S follows from [1, Corollary 2 and
Theorem 3]; see [8, Theorem 3.4.8] and [9, Theorem 4.4]. The existence of a
global attractor Ay for U follows from [1, Corollary 2] and Theorem 2 of the
present article; see [8, Theorem 3.7.2] and [9, Theorem 4.4].

Our final theorem shows that the dynamical process U and the dynamical
system S have the same global attractor.

Theorem 3 The dynamical process U = {U(s +t,s) : s,t > 0} has a global
attractor, Ay; the dynamical system S = {S(t) :t > 0} has a global attractor,
As. The two global attractors coincide. If the set € of all stationary points
of S is discrete, then Ay = Ags is the union of € and the heteroclinic orbits

between points of £.

The proof of Theorem 3 is given in Section 4.3.

13



4 Proofs

Before we give the proofs of the theorems, we recall some general properties of
the fractional powers of the operator A defined in Eq. (2.12) and the semigroup
generated by —A; cf. [4].

The fractional powers A? of the second-order elliptic differential operator
A defined in Eq. (2.12) are well defined for all real . They are unbounded for
0 > 0. The domain D(A) is a closed linear subspace of W?%2 for 0 < 0 < 1;
hence, C#(0,T;D(A%)) is a closed linear subspace of C?(0,T;W?"?) for this

range of values of §. Furthermore, for % < 0 <2 (and n = 2 or 3), the traces of

Vi, A, and V x A belong to the spaces [W9=3/22(9Q)]2", [W=1/22(9Q)]", and
[WO=3/22(9Q)]", respectively, and satisfy the boundary conditions specified in
Eqgs. (2.15) and (2.16). Similarly, the applied vector potential Ay and its curl
V x Ag satisfy the boundary conditions (2.3) if H € [W/=12(Q)]".

The semigroup generated by —A satisfies the inequality
| A%/ 2e™4%|| ;2 < Cmax{s™®/%, 1} e™™* for 0 < s < oo, (4.1)

where the positive constant ' does not depend on s and A; denotes the first
(smallest) eigenvalue of A in L£?; see [4, Theorem 1.4.3]. Note that A; > 0.

4.1 Proof of Theorem 1

Proof. The proof is based on Gronwall’s lemma aplied to the initial-value
problem (4.4) in the space C([s,00); W't*?) for s fixed, s > 0.

Given any fixed s > 0 and any two vectors u,, v, € D(AIT/2) we set
u(t) = Ul(t, s)us and v(t) = S(t — s)vs for all £ > s. Thus, u and v are the
(unique) mild solutions of the initial-value problems

% + Au = F(t,u(t)) fort>s; u(s)=us, (4.2)
and 4
d—: + Av =G(v(t)) fort>s; wv(s)=uvs, (4.3)

in L£*, respectively. Here, F(t,u) = (¢, F), with ¢ and F given by Egs. (2.8)
and (2.9), and G(v) = (v, G), with y and G given by Egs. (3.13) and (3.14).

We set h(t) = H(t) — H., and Apy) = Auy) — A, for t > 0, omitting
the argument (¢) if no confusion is possible. Note that the mapping h — Ay
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is linear, time independent, and continuous from [W%2(Q)]" to [W1+0:2(Q)]"
for 0 <0 < 1; see [1, Lemma 4].

We give ¢ and A’ a subscript to indicate whether they are components
of u or v,

U = (¢u7 A;) = (¢u7 A, — AH)v v = (¢v7 A;) = (¢U7 A, — AHOO)-

Thus, v, and A, satisfy Eqgs. (1.10)—(1.12), ¢, and A, Eqgs. (3.5)—(3.7). We
denote the difference w = u — v and use the same subscript convention for the
components of w,

w = (¢w7 Aiu) = (¢u - ¢U7 A; - A;) = (¢u - ¢U7 Au - Au - Ah)

Subtracting Eq. (4.3) from Eq. (4.2), we find that w satisfies the initial-value
problem

— 4+ Aw = H(t,w(t)) fort>s; w(s)=us;—vs, (4.4)

in £%, where
H(t,w) = Ha(t,u,v)w + Ho(t,u,v)h + (0, —Asm) - (4.5)
The first term on the right-hand side is linear in the components of w,
Ha(t, o) = (ot w, 0w, Fa(u, o)),

where

arltano)w = [ ((T6,) - (AL + A+ (V) - AL

—— (L= ) [0V - A]) + (V- AL)]
—@/)w|A/U + AH<>0|2 — @/)uAQU . (A; + A; + Ag + AHOO)
‘|‘ (1 - |77Z)u|2 - |77Z)v|2) ¢w - ¢u¢v¢fo} )
Fi(u,v)w = i [NV apy 4+ by, Vb, — 0, VP, — 10, V)]

_(¢w¢z + ¢u¢;)(A; + AHoo) - |¢u|2Aiu

(The explicit dependence of ¢y on t is caused by the term Agn.) The second
term on the right-hand side of Eq. (4.5) is linear in h,

Ho(t, u,v)h = (@2(t, u,v)h, Fo(u)h),

15



where

21
992(t,u,v)h: _;v@bu_@bu(A;‘l‘A;‘l‘AH‘l‘AHoo) 'Ah,

!
Ui
FQ(u)h = _|¢u|2Ah'

The last term on the right-hand side of Eq. (4.5) accounts for the time depen-
dence of H; it is linear in 0, H.

Let Bpr be the ball of radius R centered at the origin in W!T*2. We claim
that the mapping w — H;(t,u,v)w : W2 — £? is uniformly bounded for
all t > s and all u,v € Bg. The claim is proved by estimating each term in
Hi(t, u,v)w separately. For example,

102V ulre < [Yullpelldwllwes < Cllwllwieaz,

where (' is a positive constant, which depends only on R. Similar estimates
hold for the other terms, so

| H1(t, u,v)w|| 2 < Cllw||witaz  for t > s, (4.6)

for all w and v in Bpr, where C is a positive constant, which depends on R,
but not on s or t. The norms of Hz(?,u,v)h and As,pu are readily estimated,

| Ha(t, u,v)h|| 2 < Cllh||waz  for t > s, (4.7)
HAatHlez S CH&:HHL2 for ¢ Z S, (48)
where, again, the positive constants ' depend on R, but not on s or ¢.

Take any ¢ > s. From Eqs. (4.4) and (4.5) we obtain the inequality

leo(D)llwises < e, = v,)[lyise

t
o

/

e A (1 u(t'), v(t) )w(t')

Wita,?2
t I
n / A H(# u(t), o (DR oy
t I
‘|‘/ e_A(t_t)(Ov_AatH(t/))HWH-a2 dt”.

Keeping in mind the inequality (4.1), we apply the estimates (4.6)—(4.8) and
conclude that

Hw(t)HW1+a,2 S Cl e_/\l(t_s) Hus — Uusl-I-OL,2
t
S

+Cy [ max{(t = )70 1} e o) s di

16



t I
4y / max{(t — /)0+/2 1} &= |[R(1")||ypaz A1’

1
+04/ max{(t — ')"0+/2 1} =M= g H(#)|2 dt. (4.9)

Here, C'; through Cy are positive constants, which depend on R, but not on s
or .

To obtain an upper bound for ||w(t)||witaz, t > s, we take a number A > 0
to be determined later and define the function f on [s,00) by the expression

f(t) = sup (Hw(t/)le+a,2 e_(A_Al)t/) for t > s.
t'e[s,t]

Given any number v € (0, 1), we also introduce the convolution kernel
koy(s') = max{(s')™7, 1 e" (A2 for ¢ > 0.

Then there exists, for every p with 1 < p < 1/v, a positive constant C. ,,
which does not depend on A (A > 0), such that

00 1/p
( [ ety ds’) < O A0 for all A > 0, (4.10)
0

Applying Holder’s inequality to the various integrals in (4.9) and using the
inequality (4.10), we obtain the estimate

F(8) < Crlluy = valypisas eA=08
AT {%wzﬂ [Czﬂ ) +Cs st (JA(Y) s e‘“‘“’”)]

+ , 1/2
+C4Cq20 (/ |0:H (#)||72 e~ 2(A=A)t dt’) } for t > s. (4.11)

We take A > 0 sufficiently large that A > Ay and CyC(144)/21 A" (1-0)/2 <
Then it follows from the inequality (4.11) that

fy=c

ity — vyllwrens €A77 4 sup (([R(E) e -G
t'e[s,t]

1/2
(/ |0.H (t')||2, o2~ A dt') ] for t > s,

where the positive constant (' depends on R, but not on s or ¢t. This estimate
can be rewritten as

Hq“l)(iL)HVVl‘Wv2 < C |:Hus — USHW1+Q,2 e(A_/\l)(t—S)
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+ sup (Hh(t/)HWQQ e(A—/\l)(t—t’))

t'e[s,t]
t , 1/2
+ (/ |0 H (1)])2, XA dt') ] for t > s. (4.12)

Hence,

|w(t)|[witaz < CeA=A)(t=s) [Hus — vg||wrtaz + sup |[R(1)]| ez
t'>s

0o 1/2
+ (/ 10:H (1')||32 dt') ] for t > s. (4.13)

The desired inequality (3.16) follows from (4.13) if we choose simultaneously
& > 0 sufficiently small and ¢, > 0 sufficiently large that

0o 1/2 c
5+ sup B e+ ([ I0H@) ') < 2

>t

Hypotheses (H4’) and (H4”) guarantee that such a choice is possible. 11

4.2 Proof of Theorem 2

Proof. (i) See [1, Theorem 3(i)].
(ii) See [1, Lemma 1].
(iii) See [1, Theorem 3(ii)] for S. It remains to prove (iii) for U.

The functional E, ), A] defined in Eq. (3.20) is coercive on W"?;
see [5, Chapter I, Eq. (5.45)]. Given a weak solution (¢, A) of the gauged
TDGL equations, we let FE,(t) = E,nw(t), A(t)]. The function FE, is
bounded on [0, 00), because of the inequality (3.21) and the hypothesis (H4”).
Its coercivity property then implies

€ L0, T; [WH(Q)])?) and A € L0, T;[WhH(Q)]").

Also, Ag € L*(0,00; [W!'2(Q)]"), because of the hypothesis (H4’). Hence,
u = (¢, A") € L=(0,00; W"?), which shows the boundedness of the orbit of
each ug € D(.A(H'a)ﬂ) in Wh2,

We improve this regularity result by taking advantage of the smoothing

action of the semigroup e™*; see the proof of global existence in [1, Theorem 1].
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We first treat A’ and then use the result to improve the regularity of 4.
FEach term in F', which has been defined in Eq. (2.9), needs to be estimated
separately. The smoothing action of e™*? applied to the term d; Ay yields the
integral

Ju(t) = /Ot e~ Al=9) (0, Asm(s)) ds.

Making use of hypothesis (H4”), one shows that Jg : [0, 00) — [Wt*2(Q)]"
is a bounded continuous function; see [1, Lemma 5]. The remaining terms in
F are estimated in a standard way. For example,

[0V |2 < [[¢]| 2 l0]lwre < Cllullwre.
Here, C' = max{l, ||too]|re}, which is independent of ¢>. Similar estimates hold
for the other terms in F', so F € L*(0,00;[L*(Q)]"). Therefore,
¢
(t - [ e‘A(t_S)F(s)ds) € 10, 005 [W1F2(0)]"),
0

so A" € L*(0, 0o0; [WT2(Q)]").

Next, we improve the regularity of ¢, which has been defined in Eq. (2.8).
Again, each term in ¢ needs to be estimated separately. For example,

(V) - (Am + A2 < (V) - Amllze + (V) - Al 12,
where
1(V6) - Aulle < IVl Asllze < Cllullyre | Azl

and

10V4) - Al < IVl Al < Cllullwaa | A lwives.

(To obtain the last estimate, we used the Sobolev imbedding theorem.) Similar
estimates hold for the other terms in ¢, so ¢ € L*(0, 00; [L*(Q2)]?), and, there-
fore, ¢ € L>(0,00; [W't*2(Q)]*). Hence, u = (¢, A") € L>*(0, 00; Wt2),
which shows the boundedness of the orbit of each ug € D(.A(H'a)ﬂ) in Wite?,

The compactness of the orbit closure is an immediate consequence of the
boundedness and [1, Corollary 2].

(iv) See [1, Theorem 3(iii)] for S. It remains to prove (iv) for U.

Let s > 0 be fixed. It follows from (iii) that the omega-limit set ws(ug) of
each ug € D(AM+/2) under U(s+t,s), t > 0, is nonempty and compact. We
prove by contradiction that ws(ug) is connected.
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Suppose ws(ug) is not connected. Then w,(ug) = Ky U K3, where K; and
Ky are compact and disjoint. Hence, there exist two disjoint open neighbor-
hoods N; and N, of K and K5, respectively, in D(.A(H'a)ﬂ) and to > 0, such
that U(s +1,8)ug € Ny U Ny for all ¢ > tg. But {U(s +1¢,8)ug: t > to}, being
the image of the interval [to, 00), is connected, so we have a contradiction.

The proof that the omega-limit set w(ug) of uy € D(.A(H'a)ﬂ) consists
exclusively of equilibrium points for S parallels [7, Chapter VII, proof of The-
orem 4.1]. We denote u(t) = U(s + ¢, s)up and introduce the function F,

B(t) = (EYg - P(t)" fort >0, (4.14)

where P(1) is given by Eq. (3.22). Equation (3.21) implies that F(s+t) < F(s)
for s > 0 and t > 0. Moreover, the limit F., = lim;_ . E(t) exists and is
finite, by hypothesis (H4”). Next, we take advantage of the continuity of
the Liapunov functional (t,v) — Ei{zl(t)[v] and t — P(t), combine it with
Corollary 1, and let s — oo. Thus, for all w = (¢, A — An) € ws(ue) and
t > 0, we have

Bon [S(w] = Bup[w] = (B + P ),

where P, = lim;—., P(t) < co. The remainder of the proof is standard; see [7,

Chapter VII, proof of Theorem 4.1].

If w=(¥,A— An) € ws(ug), then F,[S(t)w] = E,[w] for all t > 0, and
the same argument as in [1, proof of Theorem 3(iii)] leads to the conclusion

that w(V - A) =0 in Q. Because w > 0, it follows that V- A =10. 1§

4.3 Proof of Theorem 3

Proof. We take an arbitrary open bounded set B in D(A!+9)/2) satisfying
Av U As C B. The proof of the identity Ay = Ag consists of two parts.

(i) As C Apy. From Eq. (3.18) we deduce that

SH)BC |JU(s+1,s)B for every t > 0.

520

Therefore,

UswbBc ) UUs+t,s)Bc |J Uls+t,s)B,

tZtO tZtO SZO 5207t2t0
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for every to > 0, so w(B;S5) C w(B;U) for any open bounded set B in
D(.A(H'a)/z). It follows that Ag C Ay

(i1) Ay C As. Let By = Upcs<icos U(t,s)B. The coercivity on W'? of the
functional K, g, A] defined in Eq. (3.20) and the inequality (3.21) imply
that By is bounded in W't*2 Furthermore, [1, Corollary 2] implies that, for
0<s<t<oo,each U(t,s): D(AM+/2) — D(AI+)/2) maps bounded sets
into relatively compact sets. Then we have, for any positive number r,

w(B;U) = ﬂ U Uis+t+rs)B

to ZO SZO7 tZtO

= U UGs+t+rs+0)U(s+1,5)B
toZO 5207t2t0
- ﬂ U Us+t+r,s+t)By = ﬂ UU(S—I—T,S)BU. (4.15)
toZO 5207t2t0 toZO SZtO
The last set coincides with the closure of S(r)By in W'*? according to

Eq. (3.18), so w(B;U) C S(r)By for every r > 0. It follows that Ay C As. 1
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